

INFLAMMATION RESOLUTION

CSO Thomas Jonassen

The melanocortin (MC) Peptide program

Combined MC technologies provide versatility to address a broad range of autoimmune and inflammatory diseases

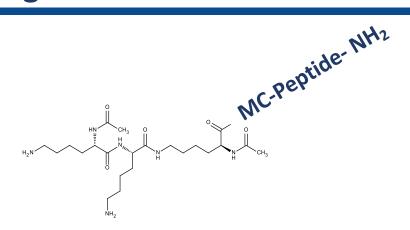
Resomelagon/AP1189

Being developed for: Once daily oral administration

- Early severe RA (P2b)
- DMARD-IR RA (P2a/b)
- Membranous nephropathy (P2a)

MC Peptides

Being developed for:

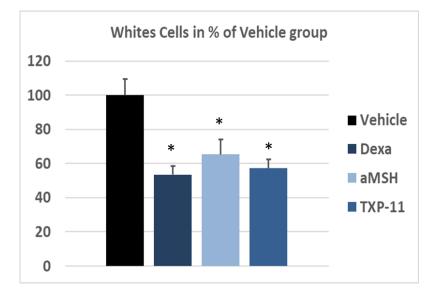

- TXP-11: Intravenous administration for organ protection in major surgery
- TXP-35: Slow-release formulation for inflammatory and orphan diseases

AP1189 and MC peptide agonists are complimentary

	AP1189	MC Peptides
ΑΡΙ	Small molecule	 70+ peptide analogs
Receptor Selectivity	• Selective for MC receptors 1&3	• Varying profiles of MC receptors 1,3,4 & 5
Agonism	 Biased Agonist - Stimulates ERK1/2 activation pathway Provides immunomodulation without potential cAMP pathway side effects like melanogenesis 	 Full Agonist – Stimulates both cAMP and ERK1/2 pathways, similarly to natural agonists Potential to provide additional activity from cAMP stimulation
Dosage Form	Oral, once-daily dosage form	 IV and Sustained-release SC Can develop additional forms per need
Suitable For	 Early use in inflammatory conditions like RA where MC receptors 1&3 are involved and where oral convenience and good tolerability are important Combination use with advanced therapies in patients with more advanced disease 	 IV for severe inflammation associated with organ dysfunction/failure like major surgery Sustained-release SC in inflammatory conditions where parenteral administration or local administration are desirable

The combined melanocortin technologies will allow targeted development for a wide range of autoimmune and inflammatory diseases with unique assets with MC receptor profiles and routes of administration tailored to the disease and target patient population

BAP modification of MC peptides is associated with increased binding affinity and potency over native ligands


	MC1R		MC3R		MC4R			MC5R				
Peptide Agonist	K _i (nM)	EC ₅₀ (nM)	Е _{мах} (%)	K _i (nM)	EC ₅₀ (nM)	Е _{мах} (%)	K _i (nM)	EC ₅₀ (nM)	Е _{мах} (%)	K _i (nM)	EC ₅₀ (nM)	Е _{мах} (%)
α -MSH derived:	4.6	13	96	114	62	95	128	28	107	404	1104	103
TXP-11	1.2	8.9	102	24	53	110	26	18	70	193	625	111
NDP-α-MSH derived:	1.8	11	88	21	17	92	11	1.3	100	7.5	40	28
TXP-35	0.29	2.1	90	2.8	1.7	85	2.7	2.6	78	4.3	4.8	29
TXP-59	0.49	1.4	84	2.7	1.6	93	2.4	0.57	69	113	163	11

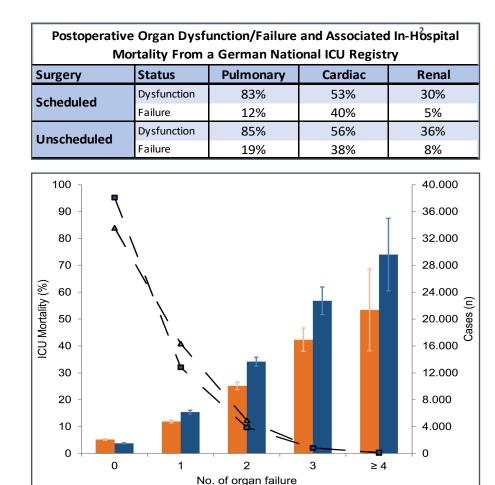
Inhibition of inflammatory responses in murine macrophages

	IL-1β	IL-6	ΤΝΕ-α	CCL-2			
αMSH backbone							
TXP-11	76%	80%	62%	16%			
TXP-35	71%	72%	52%	33%			
γMSH backbone							
TXP-01	80%	86%	72%	49%			
TXP-44	76%	74%	66%	42%			

Zymosan induced inflammation in murine macrophagesmaximal inhibitory response relative to vehicle treatment

Treatment effect in model of acute peritonitis

Compounds given iv; n=18 per group Mean ±SE. *: p<0,01 vs vehicle


Data on file

Peptides to target high unmet needs and high value opportunities

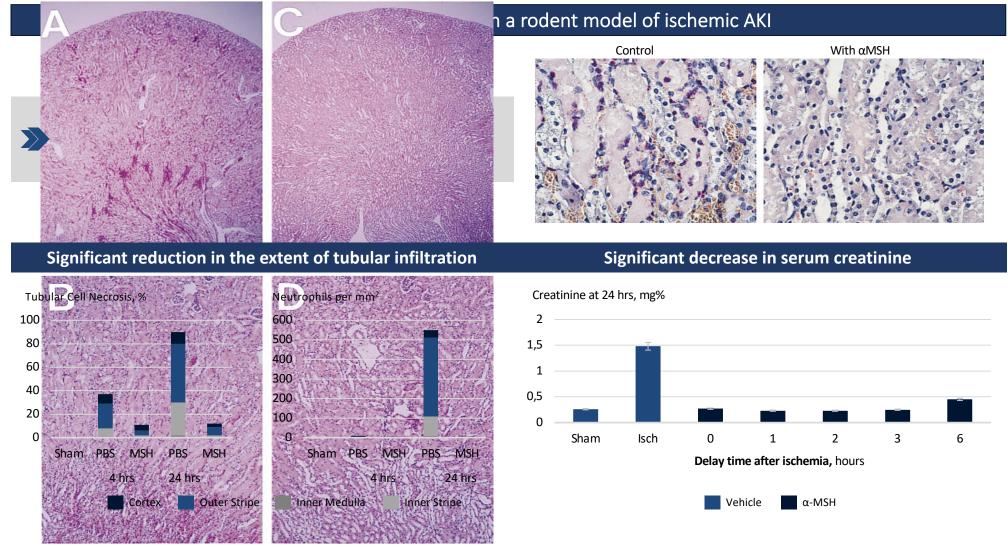
Therapeutic Area		Evidence for Targeting With Melanocortin agonists	Development Strategy		
	Critical Care	 αMSH has demonstrated organ protective effects in several models of systemic inflammation An αMSH analogs demonstrated activity in preventing the need for RRT in CABG surgery patients Wealth of animal modelling data on αMSH and analogs 	 Short-term dosing, IV administration and ability for multiple daily doses provide quick straightforward path to clinic Ability to target multiple organs/systems including pulmonary, cardiac and renal 		
	Rheumatology	 Complete melanocortin system is expressed in joints Demonstrated Acthar efficacy in RA, PSA, lupus, ankylosing spondylitis and myositis MC1R and particularly MC3R are believed to be the key MC receptors in the osteoarticular system 	 Numerous large and orphan diseases shown to be responsive to melanocortins are treated by rheumatologists Diseases are addressable with subcutaneous administration 		
	Ophthalmology	 αMSH is constitutively expressed in eye and has immunomodulating effects on retinal cells Acthar demonstrated efficacy in refractory uveitis Positive P2 data form competing technology in dry-eye disease (DED) 	 Large disease conditions like dry eye disease are accessible via eye drops - quicker path to clinic Both orphan (non-infectious uveitis) and large (AMD) diseases can be targeted with SC 		

May establish collaborative efforts in additional therapeutic areas like pulmonary and dermatology

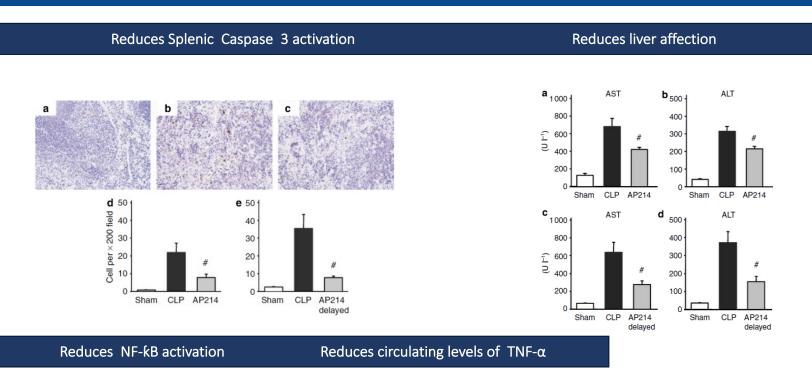
Postoperative organ dysfunction and failure is a significant source of in-hospital mortality and healthcare system cost

Postoperative Organ Dysfunction and Failure

- Organ dysfunction and failure are common surgical complications¹
- The three primary organs/systems involved in perioperative complications include the pulmonary cardiac and renal systems
- In-hospital mortality from surgical-admissions to the ICU was shown to increase substantially with the number of impaired organs (SOFA Score)
- For postsurgical patients the risk of in-hospital mortality was highest for liver, renal and pulmonary with odds ratios of ~3.1,
 2.7 and 2.3 respectively in patients with an ICU LoS > 5 days


¹ Bingold, et al. (2015) Individual Organ Failure and Concomitant Risk of Mortality Differs According to the Type of Admission to ICU. PLoS ONE 10(8); ²Figure from and data table adapted from same

——— Cases Dav 3


🗖 Day 3

Adm

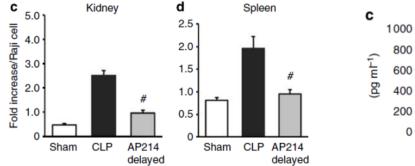
Melanocortin peptide agonists in disease models – marked treatment potential in therapeutic dose regiment

Marked organ protective effects of the AP214 melanocortin peptide agonist in model of Sepsis

800

600

400


200

0

Serum TNF-a

Sham CLP AP214

delayed

Sepsis were induced in mice by caecal ligation puncture (CLP) and treatment with TXP-1214 (AP214) were given 6 hours later)- Readout collected 24 hours following CLP. Animals were co-treatment with imipenem/cilastatin

TXP-11 is advancing to Phase 1 clinical development in H1 2024 – Targeting organ dysfunction following major CV Surgery

- Lead candidate in novel class of melanocortin receptor agonists with increased affinity and potency compared to native melanocortins
- Peptide designed by use of IP-protected BAP (Branched Amino-acid Probe) technology
- Anti-inflammatory and pro-resolving effects in relevant experimental models
- TXP-11 is being developed as an intravenous solution for the treatment of organ dysfunction as seen in major surgery and in critical care patients
- Preclinical development including IND enabling tox and GMP production of study medicine has been completed
- Continued supportive pharmacology program to support CTA is ongoing
- Current development status:
 - Pharmacology program in additional disease models ongoing
 - toxicology and safety pharmacological studies to support clinical development completed NOAEL: rat: 25 mg/kg given once daily for 2 weeks; minipig: 10 mg/kg given as 30 infusion once daily for 2 weeks.
 - CMC development for Phase 1 and 2a studies completed. This includes GMP produced drug substance and production of first clinical batch of drug product

INFLAMMATION RESOLUTION

Thank you

INFLAMMATION RESOLUTION

